Главная » Наука » "Ухо Антарктики": как физики превратили целый континент в детектор частиц
Наука Татьяна Милская 12.11.2017 0 0

«Ухо Антарктики»: как физики превратили целый континент в детектор частиц

Александр Новиков, научный сотрудник НИЯУ «МИФИ», рассказал РИА Новости о том, зачем российские ученые и их коллеги из НАСА каждый год отправляются в Антарктиду и запускают там необычные «воздушные шары», а также поделился впечатлениями от жизни в окрестностях Южного полюса Земли.

Раз в несколько лет ученые из университета штата Гавайи, НАСА, Национального исследовательского ядерного университета «МИФИ» и многих других научных центров мира отправляются в необычные экспедиции в Антарктику, на станцию Мак-Мёрдо, в ходе которых они занимаются, казалось бы, очень странной вещью. Они запускают в холодный полярный воздух аэростаты, начиненные самой высокотехнологичной аппаратурой, и отдают их на волю ветров на последующие несколько недель.

Используемые учеными «воздушные шары» помогают в поиске нейтрино сверхвысоких энергий. Эти частицы представляют собой следы самых мощных взрывов и катаклизмов Вселенной, происходящих в центрах галактик, окрестностях сверхмассивных черных дыр и других уголках мироздания, о природе которых астрономы продолжают спорить.

«На самом деле наши «воздушные шары» нельзя назвать чем-то старинным и архаичным. Современные аэростаты могут поддерживать свою высоту, подниматься и спускаться в разные времена суток, совершать многие другие маневры. Они выгодно отличаются от спутников тем, что их можно запускать многократно, что значительно сокращает расходы на проведение наблюдений», — объясняет физик.

Вдобавок аэростаты, отметил ученый, способны передавать и получать гораздо больше данных, чем это могут сделать спутники, и имеют несколько других плюсов, благодаря которым научная команда проекта ANITA выбрала «воздушное наследие XIX века» в качестве базовой платформы для работы детекторов, создаваемых в США и в МИФИ.

Поисками «сверхвысоких» нейтрино американские ученые, участвующие в проекте ANITA (Antarctic Impulse Transient Antenna), занимаются уже десять лет, и им еще не удалось найти ни одной подобной частицы. Пока это не является проблемой — другой проект подобного рода, высокогорный телескоп Пьера Оже в Чили, открыл лишь два или три десятка космических лучей сверхвысокой энергии за десятилетия почти непрерывной работы. «Соседу» ANITA, телескопу IceCube на Южном полюсе, удалось найти всего несколько десятков нейтрино, прилетевших на Землю из далеких галактик.

Академик Игорь Ткачев из Института ядерных исследований РАН в Троицке рассказал о том, как Россия может стать лидером в поисках неуловимых стерильных нейтрино, как с ними связана загадочная темная материя и почему он считает, что БАК вряд ли откроет «новую физику».

На этой неделе в НИЯУ МИФИ в Москве и Институте ядерных исследований в Троицке состоялась очередная встреча физиков ЦЕРН из коллаборации NA61, пытающихся раскрыть тайны устройства кварково-глюонной плазмы, аналога первичной материи Вселенной, и принципы взаимодействия между нейтрино, самыми неуловимыми частицами, и другими формами материи.

Направление исследований для многих из этих экспериментов, как рассказали участники встречи, были заложены еще несколько десятилетий назад силами советских и российских ученых в Троицке. Например, в начале 1990 годов отечественные физики начали измерения массы нейтрино и пришли к выводу, что она должна быть очень небольшой, получив лучшие в мире ограничения. Сегодня увеличенная копия российского детектора, получившая имя KATRIN, строится в Германии. Этот эксперимент позволит продвинуться в ограничениях еще на порядок, либо наконец измерить массу нейтрино.

Сам прибор, как пояснил академик Игорь Ткачев, сегодня получил вторую жизнь для поисков ответа на не менее важный и интересный вопрос – существует ли еще один вид нейтрино, помимо трех уже открытых частиц и античастиц такого рода. Эти частицы, так называемые «стерильные нейтрино», должны практически не взаимодействовать с другими формами материи и обладать необычно большой для известных нейтрино массой.

Он рассказал о первых результатах подобных поисков и объяснил, почему открытие этих частиц может стать «окном» в новую физику и может объяснить многие загадки Вселенной, в том числе и существование темной материи.

Эксперименты на японском детекторе KamLAND помогли физикам сузить пределы возможной массы нейтрино. Ученые не обнаружили следов крайне редких вариантов распада ядер ксенона-136, что говорит о более низкой массе этих частиц, чем ожидалось, рассказал французский физик Адам Фальковский.

Нейтрино представляют собой мельчайшие элементарные частицы, которые «общаются» с окружающей материей только посредством гравитации и так называемых слабых взаимодействий, проявляющихся лишь на расстояниях, существенно меньше размеров ядра атома. В середине прошлого века ученые открыли три вида таких частиц — тау, мюонные и электронные нейтрино и их «злые близнецы»-антинейтрино.

Наблюдения за Солнцем в 1960 годах и эксперименты нобелевских лауреатов Артура Макдональда и Такааки Каджиты показали, что нейтрино разных видов умеют периодически превращаться друг в друга и обладают ненулевой массой. Наблюдения за подобными превращениями, проведенные российскими и зарубежными физиками 10-15 лет назад, показали, что масса этих частиц крайне мала – она не может превышать 1,5-2 электронвольт.

По словам Фальковского, это говорит сразу о нескольких вещах — о том, что масса нейтрино гораздо ниже, чем считалось ранее, а также о том, что безнейтринные распады, если они существуют, происходят еще реже, чем «нормальные» распады Xe-136. Кроме того, не исключена возможность того, что электронные нейтрино будут самыми тяжелыми, а тау-нейтрино – самыми легкими: это обратная картина того, как соотносятся массы их более осязаемых «кузенов» — электрона, мюона и таона.

Нашли ошибку? Выделите фрагмент и нажмите Ctrl+Enter!

АКТУАЛЬНО: "Наука" ЗА СЕГОДНЯ