Главная » Наука » Ученые создали серебряных "морских ежей" для защиты труб от коррозии
Наука Татьяна Милская 09.11.2017 0 0

Ученые создали серебряных «морских ежей» для защиты труб от коррозии

Российские ученые из Института химии твердого тела УрО РАН впервые в мире получили уникальные серебряные структуры, которые могут применяться для защиты трубопроводов от коррозии. Работа поддержана грантом Российского научного фонда. Статья об исследовании опубликована в Journal of Materials Chemistry A.

Серебряные пудры часто используются как защитное покрытие, но их производство дорого и трудозатратно. Особенно это касается частиц необычной формы. Ученым из Института химии твердого тела УрО РАН впервые удалось получить звездообразные несмачиваемые частицы серебра (Ag), плотность которых меньше плотности воды. Причем сделано это было простым, но в то же время универсальным и экологически безопасным методом гидрохимического осаждения. Сам метод получения таких частиц был запатентован в России.

Тонкодисперсные (мелкие) серебряные пудры используются для производства катализаторов (ускорителей химических реакций), обработки воды, в биологии и медицине – как вещества с бактерицидным эффектом. Из тонкой пленки серебра или полимеров, состоящих из серебряных наночастиц, можно изготовить несмачиваемое покрытие для защиты поверхностей от химически агрессивных жидкостей. Обычно наночастицы серебра имеют сферическую форму, но в последние годы ученые стали работать над получением других их разновидностей. Так появились серебряные кубы, плоские треугольники и пластинки, призмы, «провода» и разнообразные лучи. Делать это чаще всего нелегко: синтез может быть дорогостоящим или сложным, как и абляция – испарение под действием лазера для получения пудры.

Частицы многолучевого серебра имеют искаженную форму, напоминающую звездчатые многогранники: от додекаэдра с 20 вершинами до икосаэдра с 60 вершинами. Длина лучей звездчатых частиц серебра определяется условиями синтеза и не связана с отношениями симметрии, характерными для звездчатых многогранников. Эти частицы размером 30–50 мкм и с 24–56 лучами были синтезированы простым и экологичным методом из нитрата серебра, который подвергли разложению в щелочной среде. Из таких структур химики сделали покрытие, на котором капля воды оставалась шарообразной и не смачивала поверхность под собой.

«Порошок или пленки из ультрадисперсных звездообразных частиц серебра могут использоваться как защитные покрытия трубопроводов для нефти и продуктов ее переработки, – считает Станислав Садовников. – Использование таких покрытий благодаря их несмачиваемости продуктами нефтепереработки и другими агрессивными жидкостями в несколько раз повысит их коррозионную стойкость, увеличит срок безаварийной службы трубопроводов, многократно повысит экологическую безопасность эксплуатации трубопроводных систем, снизит расходы по содержанию и замене трубопроводов. Такие же преимущества будут достигнуты при использовании аналогичных покрытий трубопроводов химической промышленности».

Ученые добавляют, что полученные серебряные частицы имеют очень большую площадь поверхности и могут использоваться как катализаторы или подложки для них.

Исследователи из Балтийского федерального университета имени Иммануила Канта совместно с коллегами из Уральского федерального университета и Института электрофизики Уральского отделения РАН подтвердили возможность использования наночастиц оксидов железа в магнитном биодетектировании. Статья о проведенном исследовании опубликована в Journal of Magnetism and Magnetic Materials.

Магнитное биодетектирование — мультидисциплинарная область знаний на стыке физики, химии, материаловедения, нанотехнологий и медицины, призванная определять состояние организма по особенностям его отклика на приложение внешнего магнитного поля. Сами по себе ткани и жидкости живой системы обладают очень слабыми откликами на данное поле. Поэтому для биодетектирования необходимо вносить в организм магнитные метки — частицы, которые будут так или иначе реагировать на внешнее поле. Конечно, эти частицы должны быть безопасными для живых тканей и обладать малым размером, в пределах наномасштабов.

Устройство, с помощью которого осуществляется биодетектирование, называется биосенсором. Оно позволяет осуществлять сбор и хранение информации о биосистеме (в частности, о человеческом организме или его части) в автоматическом режиме. Даже не имеющий специальной медицинской подготовки человек может контролировать состояние и управлять различными биологическими системами, используя биосенсор.

В составе магнитного биосенсора работают как минимум два магнитных материала: сенсорный элемент, детектирующий слабые поля, а также наночастицы. Изменение магнитного поля в таком биосенсоре преобразуется в изменение частоты, тока или напряжения.

Физики из университета ИТМО, МФТИ, МИФИ и московских институтов РАН создали новый биосенсор, который позволяет практически мгновенно определять присутствие вирусов или бактерий в образцах крови или воздуха, просвечивая их инфракрасным излучением, говорится в статье, опубликованной в журнале Laser Physics Letters.

«Наши оптические биосенсоры могут обнаруживать даже очень малые количества бактерий. Так, ранняя высокочувствительная диагностика инфекционных заболеваний в детских садах, школах и университетах, особенно в периоды сезонных эпидемий, позволит свести лечение к профилактике. Врачам в инфекционных больницах данная методика поможет более оперативно ставить диагноз пациентам», — рассказывает Сергей Кудряшов из Университета ИТМО в Санкт-Петербурге, чьи слова приводит пресс-служба института.

Биосенсоры, созданные Кудряшовым и другими отечественными учеными, работают благодаря остроумному приложению наших знаний о том, как свет и другие виды электромагнитного отражаются и преломляются при прохождении через сложные молекулы, в том числе и те, которые составляют основу оболочек микробов и вирусов.

Каждый микроб, вирус или даже клетки тела человека содержат на своей поверхности уникальный набор молекул, по спектру которого ученые могут определить, с каким патогеном или, к примеру, культурой раковых клеток, они имеют дело. Идея создания сенсора, который вел бы «опознавание» микробов и вирусов таким образом, существовала и раньше, однако ученые и инженеры не могли придумать, как можно изготовить такой прибор, чтобы его можно было эффективно использовать в медицинской практике.

Российские ученые решили эту проблему, используя своеобразный световой «нано-дуршаг» – тонкую серебряную пленку, в которой они прорезали миллионы микроскопических отверстий при помощи сверхмощных и коротких импульсов лазера. Отверстия превращают эту пленку в своеобразную дифракционную решетку, которая позволяет фокусировать пучки инфракрасного излучения, которыми «обстреливается» образец, лежащий на ее поверхности.

Нашли ошибку? Выделите фрагмент и нажмите Ctrl+Enter!

АКТУАЛЬНО: "Наука" ЗА СЕГОДНЯ